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Figure 1. We demonstrate the problem with single-frame based approaches. The highlighted individual is a challenging case for existing
multi-person reconstruction methods since the person is heavily occluded. This can be alleviated by using optical flow to incorporate the
motion over time.

1. Introduction

Recently, vision tasks in 3D have achieved monumen-
tal performances for tasks such as 3D keypoint estimation
[12, 28], 3D pose and shape estimation [6, 9, 10], 3D recon-
struction [32] and full-body shape recovery. 3D reconstruc-
tion in isolation is much exploited in literature but the real
strength of the task comes via scene estimation and recon-
struction that aids the process of 3D human pose estimation
and reconstruction.

For multi-person pose estimation, there are usually two
approaches considered in literature. Bottom-up approaches
first detect 2D key-points or body joints in the scene and
then use them as handles to combine for a coherent 3D
reconstruction suggestive of one human. Bottom up ap-
proaches are complicated for other 3D representations such
as mesh recoveries and parametric representations. Top-
down approaches rely on 2D object detectors to first de-
tect objects and individual persons in a scene and then per-
form 3D pose estimation on each person separately. These
top-down approaches are able to collectively harness the su-
perior performances of state of the art 2D object detectors
and as reported in [12], leverage smooth pipelines for 2D to

3D key-point regressions. While these perform well, there
is still scope for improvement, specially in cases of recon-
structions with occlusions. Inconsistent depth ordering is
another very common issue along with inter-penetrations.
Due to these shortcomings, it is critical to go beyond just
predicting a reasonable 3D pose for each person individu-
ally, and instead estimate a coherent reconstruction of all
the persons in a scene.

Recent works have emerged which perform multi-person
reconstruction [8]. In such approaches, a top-down ap-
proach is employed where in the first stage, 2D Object de-
tection is performed to detect each person, and then the 3D
human meshes are regressed for each detected person. In
addition, several other constraints have been explored to
enforce coherent reconstruction. For example, interpene-
tration loss penalises reconstructions whose meshes inter-
sect with each other. Depth-ordering aware losses have also
been used to resolve ambiguities.

However, to the best of our knowledge, no work exists
to disambiguate occlusion. One important cue which is of-
ten overlooked in context of 3D pose estimation is that of
temporal information. Temporal information can be very
useful to reconstruct multiple occluded instances of people.
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Consider the scenario in Fig 1. The highlighted individual
moves from being almost entirely occluded to being par-
tially occluded. Performing reconstruction in the both the
frames individually can be very challenging. However, if
we are able to propagate the optical flow from one frame
to another, the motion of the person over time can help to
better reconstruct the individual.

In this work, we experiment with leveraging optical flow
as a cue for 3D pose estimation. We propose several fusion
methods to augment the per-frame detections with temporal
information. We also demonstrate, both quantitatively and
qualitatively, the promise of using such an approach.

2. Related Work

2.1. 3D Pose Estimation

In present day literature, various representational forms
of 3D have been exploited for Human Pose Estimation.
Learning based method estimate 3D either from detected
2D key points or images. Some works tackle the problem
using multiple image inputs [18,23] while some recent ones
try to estimate a human pose using single RGB image aug-
mented with depth information [16, 25, 26]. While estima-
tion of 3D pose for single human is challenging in itself,
multi-human pose estimation is also a much explored task
in recent literature due to its relevance to the real world sce-
nario. This work specially targets multi-human pose esti-
mation by coherently considering the whole scene. It builds
on the works of [8] where Mask R-CNN is used to extract
2D bounding boxes for every person in the image. Meshes
are used to represent the 3D reconstructions. For mesh rep-
resentation, SMPL parameters are regressed. They refer to
it as SMPL R-CNN and apply two novel losses referred
to as the interpenetration loss and the depth-ordering con-
sistency loss. The interpenetration loss penalises the 3D
reconstruction where a part of the reconstruction occupies
an area already occupied by another reconstruction. The
depth-ordering consistency loss projects the 3D reconstruc-
tion onto an image place and uses mask segmentation avail-
able for the image to penalise any reconstruction whose
projection does not match its segmented image. This way,
depth consistency is maintained and learnt by the network.
We aim to build on this work by augmenting this network
with optical flow information to handle possible future oc-
clusions.

2.1.1 Single-person Pose Estimation

Multiple representations for 3D pose estimation have
gained recognition throughout literature. Some recent
works tackle the problem by estimating 3D poses in the
form of skeletons [12, 15, 20, 22, 28, 30, 31, 34]. Some also
try to do it in a non-parametric way by exploiting 3D shapes

[4,27,32]. SMPL [11] has been adopted as a state-of-the-art
method off-late, which estimates 3D poses in the form of a
human mesh. SMPL is a skinned, vertex-dependent model
that is capable of representing various human poses. The
parameters of the mesh are learned from data. The model
learns to estimate the shape β, pose θ, blend weights, and
a regressor from vertices to 2D joint locations. Many au-
tomatic approaches such as SMPLify [3] and SMPL-X [19]
has been built on top of SMPL to iteratively fit 2D joints to a
3D mesh model for a human. These models are much more
expressive than SMPL. There are also other models that use
silhouettes [21] and voxel occupancy grids [32] but are not
as popular.

Although these methods have been somewhat success-
ful, learning based methods that rely on only input images
have also gained traction due to successful deep learning
based visual feature extractors. These networks help 3D
mesh estimation by directly regressing the shape and pose
from images. By letting the network train end-to-end, hand-
designed features that can potentially act as bottlenecks are
avoided. Visual feature extractors via standard backbone
networks also helps leverage pre-trained models on large
datasets. The extracted features can be in any format. Mul-
tiple format have again been exploited in literature to act as
intermediates for this task.

Keypoints and Silhouettes are used in [21], semantic part
segmentation is used in [17]. [10] regress the mesh vertices
to Graph Convolutional Neural Networks. Using a prior
over the 3D shapes during training can penalize imperfect
reconstructions. This idea is used by [9].

We utilise an idea similar to [2] and use temporal context
to improve the regression network.

2.1.2 Multi-person Pose Estimation

Similar to how a single-person pose-detection is performed,
a multi-person pose detection sometimes involves isola-
tion of the single-person first and then estimating 3D using
single-person pose estimation techniques. This top-down
approach is usually quite popular with 3D pose estima-
tion methods and different techniques and architectures are
adopted in literature to extract single-persons from an im-
age and estimate their respective 3D representations. Many
works build on frameworks such as R-CNN and Mask R-
CNN [5,7] to segment out persons. LCR-Net [24] regresses
joint offsets to classify poses. [33] uses an interesting ap-
proach to incorporate a scene prior for iteratively improve
the 3D shapes and poses of people. We seek inspiration
from this work and try to incorporate scene constraints
along with a novel proposal of optical flow. Our approach
is instead a top-down approach where SMPL parameters are
regressed using the current image frame and the optical flow
to the current image frame. We believe that information
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Figure 2. Our proposed network architecture. In addition to image inputs, SMPL-RCNN [8] is also given optical flow as input to improve
multi-person reconstruction.

contained in the optical flow of a frame helps the network
understand the 3D shape better and build a better prior in
the network for occluded objects. Even if an object is not
visible in the next frame which can potentially hinder the
3D reconstruction of it, we believe the information from the
optical flow can somehow be helpful in preserving knowl-
edge about the movement of the person. This can help 3D
reconstruction of the human from the next frame.

2.2. Optical Flow

Optical flow is the task of estimating per-pixel motion
between video frames. It has been a long-standing task rid-
dles with problems involving fast-movements, motion blurs
and occlusions. As is with most vision tasks, estimation
of optical flow has slowly moved from being computed via
either hand-crafted features or complicated mathematical
equations to being learning based. In this work, use Re-
current All-Pairs Field Transforms (RAFT) [29] to estimate
optical flow from video frames. RAFT utilises a feature
encoder to extract feature vectors for every pixel in the im-
age. A correlation layer on top of it worked to produce a 4
dimensional volume for all pairs of pixels. Pooling layers
help reduce dimensions. The core strength of the algorithm
lies in Recurrent Neural Network based update operator that
iteratively updates the flow field. It has been shown to have
state of the art accuracy, high efficiency and strong general-
isation capabilities despite being trained only on synthetic
data.

3. Proposed Method

For a given image I, multi-person reconstruc-
tion aims to predict a set of SMPL parameters [11]
{(θ1, β1), · · · (θi, βi) · · · (θK , βK)} for each person

i ∈ [1,K] in I, where K is the number of people in the
scene. In this section, we propose an optical flow-based
supervision mechanism to improve the performance of
existing multi-person reconstruction networks.

3.1. Optical Flow Generation

In order to augment the network with temporal informa-
tion, we need to generate optical flow. However, existing
datasets do not contain optical flow supervision. To this
end, we use RAFT [29], a state-of-the-art optical flow net-
work.

Given two frames It−1 and It, RAFT estimates a dense
displacement field Ft−1→t = (f1, f2) for each pixel in
It−1. Concretely, each pixel coordinate (u, v) in It−1 is
mapped to the coordinates (u′, v′) = (u+f1(u), v+f2(v))
in It. We use the generated flow as an input to our network.

3.2. Flow Fusion

Our next aim is to use the generated flow Ft−1→t as in-
put to the reconstruction network in addition to the image
It. Our proposed network architecture is illustrated in Fig 2.
In this work, we only focus on early fusion methods.

In order to incorporate optical flow into the single-frame
reconstruction network, we proposed two schemes, based
on (i) type of input, and (ii) method of fusion.

Type of Input. Our first scheme to augment optical flow
into the existing network is based on the type of input to
the network. Under this scheme, we propose two methods
for utilizing optical flow. Our first method naively feeds the
generated optical flow Ft−1→t in addition to the image It
as inputs to the network. Alternatively, under the second
method, we use the image It−1 and optical flow Ft−1→t to
generate a warped image Ît. We feed this warped image Ît
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(a) Add Flow (b) Add Warped Image

(c) Concatenate Flow (d) Concatenate Warped Image.

Figure 3. Training Loss Curves for 5 epochs.

in addition to It as inputs to our network. This helps the
network understand how the objects have moved from the
previous frame to the current, which may help disambiguate
occlusion.

Method of Fusion. Under the second scheme, we propose
two methods to fuse the image and flow-augmented input
that can either be flow or the warped image. First, given
the flow-augmented input (Ft−1→t or Ît), we use a con-
volutional layer similar to the first convolutional layer in
ResNet-50 to extract features from this input. The number
of input channels to the convolutional layer is determined by
the type of input (2 channel for optical flow and 3 channel
for warped image). Once we extract features from the flow-
augmented input, we similarly extract image features using
the first convolutional layer of ResNet-50. Using the flow-
augmented features and the image features, we either add
or concatenate these features before feeding them into the
subsequent feature extraction layers in ResNet-50. In order
to perform concatenation, we introduce another convolution
layer to reduce the number of channels before feeding them
into the subsequent layers of the backbone network. The
rest of the network is the same as SMPL R-CNN [8].

4. Experiments

In this section, we evaluate the performance of our pro-
posed method.

Method All ↑ Matched ↑ Collisions ↓
SMPL R-CNN [8] 85.32 89.09 62

Add Flow 85.60 89.01 89
Add Warp 85.27 88.72 59

Concat Flow 53.68 73.92 12
Concat Warp 64.72 78.32 7

Table 1. Results on MuPoTS-3D. We report the overall 3DPCK
accuracy (All), the 3DPCK accuracy only for person annotations
matched to a prediction (Matched), and number of collisions.

4.1. Datasets

To train our network, we use the PoseTrack Dataset [1].
It consists of multiple frames corresponding to each se-
quence with several people in each frame. 2D pose annota-
tions are available and we only use this 2D supervision to
train our network.

To evaluate our network, we use the MuPoTS-3D
dataset [14]. It also consists of multiple people across mul-
tiple frames in a video sequence. It contains 3D pose anno-
tations which makes evaluation of our network feasible on
this benchmark.
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SMPL R-CNN [8] Add Flow Add Warped Image

Figure 4. We compare the pose estimation performance of the baseline with flow addition and warped image addition.

SMPL R-CNN [8] Add Flow Add Warped Image

Figure 5. We compare the depth ordering of the baseline with flow addition and warped image addition for the corresponding images in
Fig 4.

4.2. Implementation Details

The input images to RAFT are resized to 520 × 960 to
compute the optical flow at this resolution. Then, the opti-
cal flow and corresponding images are resized to the desired
shape for training. We train our network using a batch size

of 4 on a single NVIDIA RTX 2080 GPU. We train the ad-
dition scheme networks for 5 epochs, and the concatenation
scheme networks for 20 epochs.

Since training the network from scratch is not feasible,
we used the pre-trained checkpoints from SMPL R-CNN.
The entire network was frozen except for the first two back-
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bone convolutional layers and the final SMPL regression
layer, which were finetuned. We follow the same hyper-
parameter configuration as SMPL R-CNN.

For evaluation, we use an unofficial Python reimplemen-
tation1 on MuPoTS-3D. Therefore, for fair comparison, we
recompute the baseline results reported in [8] using this im-
plementation.

4.3. Quantitative Results

We perform quantitative analysis of our proposed net-
work on the MuPoTS-3D benchmark in Table 1. We use
the 3D extension for Percentage of Correct Keypoints [13]
(3DPCK) with a threshold of 150 mm to evaluate our net-
work.

On incorporating temporal augmentation by adding flow
into the image features, we observe a slight improvement
over the baseline performance on the overall 3DPCK ac-
curacy. However, the number of collisions is much higher
and the matched 3DPCK accuracy is about the same. This
suggests that adding optical flow is useful to regress key-
point locations, but leads to more incoherent or overlapping
reconstructions (especially at the non-joint locations).

On adding the warped image, we observe fewer colli-
sions with similar 3DPCK accuracy, which suggests that in-
corporating explicit information of motion of objects in the
previous frame indeed helps disambiguate depth ordering
among occluded people.

However, on performing concatenation, we observe sig-
nificantly lower 3DPCK accuracy. On observing the train-
ing loss curves in Fig 3, we hypothesize that the network
has not been trained sufficiently. SMPL R-CNN [8] was
trained through an extensive pre-training strategy for over
100 epochs. On the other hand, our new flow and fusion
branches are trained from scratch for around 20 epochs,
which leads to significantly poor performance.

The number of collisions is much lower, which suggests
that the network has not learnt to detect humans and regress
pose parameters well enough to encounter cases of depth
ordering inconsistencies. However, overcoming this chal-
lenge requires significant compute and remains beyond the
scope of this work.

Interestingly, we observe that running evaluation using
the pre-trained checkpoint leads to much higher collisions
on MuPoTS-3D than reported in the paper. The difference
in 3DPCK is explained due to the implementation differ-
ences between the original evaluation script (in Matlab) ver-
sus the unofficial re-implementation (in Python).

4.4. Qualitative Results

In this subsection, we examine the qualitative perfor-
mance of our method with respect to the baseline network

1The implementation can be found at: https://github.com/
ddddwee1/MuPoTS3D-Evaluation

in Fig 4 and Fig 5. Since the concatenation scheme was sig-
nificantly worse, we only visualize the networks following
the addition scheme.

As seen in the first row, using warped image features
leads to the detection of the player in the top-right. This
indicates the success of our approach since we are able to
detect additional people using temporal information who
were previously not detected. Similarly, in the second row,
the runners at the right end are not reconstructed well by
SMPL R-CNN. Using the optical flow improves the rela-
tive depth ordering of the detected people. Moreover, using
the warped image leads to the removal of the spurious re-
constructions. This clearly demonstates the effectiveness of
our method.

5. Conclusion
In this work, we aim to improve pose estimation in a

multi-person setting. To the best of our knowledge, pre-
vious works have not examined the use of optical flow as
temporal cues to improve human pose estimation. To this
end, we leverage optical flow using RAFT to improve re-
constructions at each frame. We propose two schemes for
flow fusion on the basis of input type and fusion method.
Our experiments demonstrate the effectiveness of using op-
tical flow as a cue for multi-person reconstruction. Our code
is available at https://github.com/anirudh-
chakravarthy/3D-Project.

6. Future Work
In the future, we aim to explore better methods to lever-

age temporal information. This could be achieved by using
scene flow instead of optical flow or introducing an flow-
based supervision in addition to pose-regression losses.
While we explore early fusion methods in this work, an-
other future direction could be to explore alternate fusion
strategies to better leverage the temporal cues. Finally, due
to lack of compute, we were unable to effectively analyze
the concatenation strategy. We intend to train these net-
works from scratch using the SMPL R-CNN training pro-
tocol to concretely comment on it’s performance.

References
[1] Mykhaylo Andriluka, Umar Iqbal, Eldar Insafutdinov,

Leonid Pishchulin, Anton Milan, Juergen Gall, and Bernt
Schiele. Posetrack: A benchmark for human pose estima-
tion and tracking. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 5167–5176,
2018. 4

[2] Anurag Arnab, Carl Doersch, and Andrew Zisserman. Ex-
ploiting temporal context for 3d human pose estimation in
the wild. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 3395–
3404, 2019. 2

6

https://github.com/ddddwee1/MuPoTS3D-Evaluation
https://github.com/ddddwee1/MuPoTS3D-Evaluation
https://github.com/anirudh-chakravarthy/3D-Project
https://github.com/anirudh-chakravarthy/3D-Project


[3] Federica Bogo, Angjoo Kanazawa, Christoph Lassner, Peter
Gehler, Javier Romero, and Michael J Black. Keep it smpl:
Automatic estimation of 3d human pose and shape from a
single image. In European conference on computer vision,
pages 561–578. Springer, 2016. 2
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